
Build higher quality software in half the time

EMPOWERING DEVELOPERS



Software systems that continue to change and grow, share the same fate…

PROGRESSIVE DETERIORATION - of the team's velocity, ability to make changes, retention of talent, and ability to hire.

Changes take longer and longer, until eventually a rewrite is the only option – another legacy system.

Amplified by the size of the codebase, the fundamental forces that cause this:

Affecting the entire industry, the success rates of software projects by size*:

12%

Medium

11%

Large

6%

Grand

61%

Small

24%

Moderate

* Statistics from 2015 CHOAS Report by The Standish Group, which assess project 
outcomes from a broad database of software projects. Success in this context 

means on-time, on-budget, and with satisfactory results.

The real reasons software codebases deteriorate

ARCHITECTURAL 
RIGIDITY

Complexity grows exponentially in 

a codebase as features are added, 

paralyzing developers’ ability to 

make changes.

LOSS OF SYSTEM 
DESIGN VISIBILITY

Systems decline rapidly when design 

visibility is lost (e.g. key developers moving 

on), making it harder to make changes 

correctly and avoid design erosion.

TECHNICAL
DEBT

Inconsistency, design-erosion, 

technical debt that grows with each 

change in the codebase, tending 

toward the big ball of spaghetti.

FALLING BEHIND 
TECHNOLOGY

Becoming stuck in outdated 

technologies or versions, unable to 

achieve new non-functional 

requirements or remain supported.



Preventing codebase deterioration

In an ideal world: code has no weight, architecture is without cost, 
systems self-document their design blueprint, and technologies are 
interchangeable. The following mechanisms, when combined, help 
achieve this:

PATTERN REUSE
Software systems are made up of patterns – each instance is 
different, but the patterns are the same. Pattern reuse is the ability 
to turn these patterns into artifacts that can be reused within 
projects and across organizations.

CODE-MANAGEMENT
If developers can only write several lines of code at a time, then 
code-automation is the ability to write thousands in a second. 
Code-management is a unique approach to this which avoid the 
common pitfalls which historically have made it impractical.

VISUAL MODELS
Using visual models to describe software design contracts can 
be incredibly powerful. By compressing information into visual 
formats, the human mind can quickly interpret and digest it. If 
synchronized with the code, it offers a blueprint of the system.

PATTERN REUSE

CODE-
MANAGEMENT

VISUAL MODELS



What is Intent Architect?
ADDITIONAL 
INFORMATION

Intent Architect is a tool that 
allows developers to design 
their applications and 
automate the structures, 
patterns & architectural 
code that make that design a 
reality.

It helps tech-enabled 
companies of all sizes to 
develop their software 
faster, more efficiently, and 
at higher levels of quality 
and consistency. It does 
this without being 
prescriptive, or forcing the 
team to change 
technologies, architecture, 
or coding standards.

Intent Architect is 
programming language 
agnostic, with real-world 
usages in C#, Typescript, 
Java, HTML, SQL and 
others.

NON-PRESCRIPTIVE
Allows developers to automate the 
architectures and patterns of their 
project, in exactly the way that they 
want.

VISUAL MODELS
Powerful and extensible designers 

used to describes the system’s 
design in visual models

MODULES
Modules are Intent Architect’s 

artifacts for pattern reuse. They 
encapsulate code patterns which 

can be installed into applications.

TOOL FOR DEVELOPERS
Installed as a tool on the 

developer’s machine and used 
alongside their favourite IDE

CODE-MANAGEMENT
A unique approach to code-automation 
which employs intelligent merging 
algorithms - enabling developers and the 
automation systems to work seamlessly 
in the same code files.

NO LOCK-IN
Intent Architect does not 
introduce runtime 
dependencies or lock-in.

Intent Architect is a next-generation software development tool 
for developers and solution architects.



How it works

Intent Architect works with the developer to create and update files in the codebase.
✓ Code is managed based on the developer’s design (Visual Models) and which Modules they’ve installed.
✓ Non-automated tasks & business logic are managed by the developer.
✓ Changes are determined each time the developer runs the Execution Process, as illustrated below.

VISUAL MODELS
Developers describe and 
update the high-level design 
of the application (e.g. 
persistence, services, etc.)

MODULES
Automated patterns that have 
been created for the project or 
reused from another. These are 
installed and managed.

EXECUTION PROCESS
1. Feeds the metadata from the Visual Models into the 

Modules (automated patterns), which generated the 
automation-side code output.

2. This output is compared with the existing codebase 
and any instructions to disable or change code 

generation behavior are applied.

3. The final output is staged before being accepted / 
rejected by the developer.

APPLICATION 
CODEBASE



Intent Architect directly tackles the fundamental forces that cause software to deteriorate.

Teams can expect to deliver high-quality, consistent code – that flawlessly follows their 
architecture – in a fraction of the time it would’ve normally taken them.

CONSISTENCY & 
STANDARDIZATION

Codifying and automating 
patterns means that 
anything managed by 
Intent Architect is exactly 
according to the team’s 
standards and can be 
updated in one place.

LIGHTNING-FAST 
DELIVERY

Code-management 
enables immense speed, 
without any compromise 
in quality - the code is 
generated correctly, as the 
team intended, and 
without human error or 
bugs.

VISIBILITY & 
DOCUMENTATION

Visual models represent 
the system’s design / 
blueprint, which is 
aligned with the 
underlying code – an up 
to date and accurate 
document of the 
system’s design.

AGILITY & 
FLEXIBILITY

Change designs, 
upgradable patterns, 
architecture and even 
technologies across the 
entire system, in one 
place. Avoid becoming 
a “legacy” system.

KNOWLEDGE 
RETENTION

Improves shared 
knowledge, reduces key-
man dependencies and 
fast-tracks the learning 
curve for new joiners.

BUILD IP & 
PATTERN REUSE

Automated patterns, 
when reused between 
teams and across 
projects, forms IP, “free” 
architectures, and even 
a competitive advantage 
for an organization. 

How it helps



Who we are

Excellence
We believe in holding 
excellence at the core 
of every product and 
solution we create.

Value
We aim to ensure 
there is tangible and 
profound value in 
everything we do.

Pragmatism
We make sure that 
every solution we 
create actually works
– in the real world.

We are a founding team of software architects, with 
collectively over 50+ years of real-world experience.

Our mission is to empower development teams 
with superior ways to build software systems. 

We do that by creating powerful, practical and 
innovative tools.

For developers. By developers.



MICROSERVICES
Bootstrapping, integrating, 
package configuration, etc.

SERVICES
RESTful APIs, SOAP APIs, DTOs, 

Proxies,  etc.

WORKFLOWS
Flow configuration, logic hook-

points, etc. 

FRONT-END
Technology boilerplate, standard UI 

patterns, etc.

PERSISTENCE
ORM Mappings, Repositories, 

Specification patterns, etc.

EVENTING
ORM Messages, Bus configuration, 

Publishers, Subscribers, etc.

Common use cases

Intent Architect is ideal for new projects, microservices, modernizations, rewrites, 
and large refactors. It can also be progressively introduced into existing codebases.

Typically, Intent Architect is used to create and manage the code that supports:



CASE STUDY

INOXICO

How Inoxico used Intent Architect to 
build high-quality SaaS products for 
their users at a pace that their 
competitors could never match.

OVERVIEW
Inoxico adopted Intent Architect in 2015 as a strategic 
software development tool to help them overcome their 
rigid legacy systems and to build, enhance and maintain 
their envisioned SaaS products.

With a small team of software engineers using Intent 
Architect to automate the majority of their boilerplate 
coding tasks, they were able to focus on design, customer 
experience, and getting the most out their technology 
stack (while being able to continuously change direction 
as the business evolved!).

Within 9 months they were able to rewrite over 3 years of 
legacy systems, helping them leap ahead of the 
competition and set them on a course to later become the 
de facto industry leader – their advantage: the ability to 
bring high-quality SaaS products to the market at several 
times the speed of their competitors.

CONCLUSION
Since being adopted, the effect of Intent Architect has been dramatic – it shifted the 
way that Inoxico competes in the market. It allowing them to build (and change) their 
products at lightning speed, in a way that their larger (and better resourced) 
competitors couldn’t equal.

While most businesses expect a trade-off between cost, time and quality, Inoxico is a 
perfect example of how Intent Architect can enable increased quality & flexibility 
without increasing cost and time – but instead reducing it!

MICROSERVICES

PERSISTENCE 
INFRASTRUCTURE

SERVICE 
INFRASTRUCTURE

WORKFLOWS

EVENTING 
INFRASTRUCTURE 

Standardized Architecture
Used Intent Architect to ensure 
separation of concerns and to keep 
infrastructure code 100% consistent 
and standardized

Microservices
Enabling a microservice architecture 
by making the setup of a new 
microservice a 5 minute task, 
complete with service, persistence 
and eventing infrastructure.

Domain Driven Design

Combined Intent Architect’s modelling & 
automation capabilities to follow DDD 
principles and patterns (typically very 
time-consuming) at zero to the team.

Customized Workflows
Realizing they could capitalize on a gap in 
the market for customized workflows, 
Inoxico used Intent Architect to reduce up 
to 90% of the development time & cost.

RESULTS

OUR APPROACH

3.16x
FASTER DEVELOPMENT

71%
CODE MANAGED

67%
LESS BUGS

* Ways that Intent Architect was used

https://www.inoxico.com/


Marius Vorster
CHIEF TECHNOLOGY OFFICER 

INOXICO

“Intent Architect provides us with a strong 
competitive advantage. It has opened my eyes 
to a new way of developing custom software.”



“As a FinTech organisation, adaptability is key 
to being an industry leader. Intent Architect 

helps set us apart.”

Johan van Rhyn
SOLUTIONS ARCHITECT

BRIGHTROCK



“Intent Architect truly allows you to take full 
control of your software again.”

Paul Milne
ENGINEERING LEAD

SNOW SOFTWARE



info@intentarchitect.com / www.intentarchitect.com

EMPOWERING DEVELOPERS


